Strictly locally convex hypersurfaces with prescribed curvature and boundary in space forms
نویسندگان
چکیده
منابع مشابه
Alexandrov Curvature of Convex Hypersurfaces in Hilbert Space Forms
It is shown that convex hypersurfaces in Hilbert space forms have corresponding lower bounds on Alexandrov curvature. This extends earlier work of Buyalo, Alexander, Kapovitch, and Petrunin for convex hypersurfaces in Riemannian manifolds of finite dimension.
متن کاملOn Locally Convex Hypersurfaces with Boundary
In this paper we give some geometric characterizations of locally convex hypersurfaces. In particular, we prove that for a given locally convex hypersurface M with boundary, there exists r > 0 depending only on the diameter of M and the principal curvatures of M on its boundary, such that the r-neighbourhood of any given point on M is convex. As an application we prove an existence theorem for ...
متن کاملExistence of Convex Hypersurfaces with Prescribed Gauss-kronecker Curvature
Let f(x) be a given positive function in Rn+1. In this paper we consider the existence of convex, closed hypersurfaces X so that its GaussKronecker curvature at x ∈ X is equal to f(x). This problem has variational structure and the existence of stable solutions has been discussed by Tso (J. Diff. Geom. 34 (1991), 389–410). Using the Mountain Pass Lemma and the Gauss curvature flow we prove the ...
متن کاملHypersurfaces of Constant Curvature in Space Forms
In this paper we shall discuss hypersurfaces M of space forms of constant curvature; where curvature means one of the symmetric functions of curvature associated to the second fundamental form. The values of the constant will be chosen so that the linearized equation will be an elliptic equation onM . For example, for surfaces in 3 the two possible curvatures are the mean curvature H and the Ga...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2019
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2019.1670675